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Abstract

Efficient forward models of photon migration in complex geometries are important for noninvasive imaging of tissue

in vivo with diffuse optical tomography (DOT). In particular, solving the inverse problem requires multiple solutions of

the forward model and is therefore computationally intensive. We present a numerical algorithm for the rapid solution

of the time-dependent diffusion equation in a semi-infinite inhomogeneous medium whose scattering and absorption

coefficients are arbitrary functions of depth, given a point source impulsive excitation. Such stratified media are biomed-

ically important. A transverse modal representation leads to a series of one-dimensional diffusion problems which are

solved via finite-difference methods. A novel time-stepping scheme allows effort to scale independently of total time (for

fixed system size). Tayloring to the DOT application gives run times of order 0.1 s. We study convergence, computa-

tional effort, and validate against known solutions in the case of 2-layer media. The method will be useful for other

forward and inverse diffusion problems, such as heat conduction and conductivity measurement.
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1. Introduction

Diffuse optical tomography (DOT) [1,9] is receiving growing attention as a noninvasive method for func-

tional imaging of living tissue. Near-infrared light propagates diffusively inside tissue for long distances,

allowing surface measurements to be sensitive to absorption at depths of order centimeters. In this wave-

length range the small absorption is dominated by the spectra of oxy- and deoxy-hemoglobin. The large
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difference between the two spectra allows reconstruction of independent spatial maps of oxy- and deoxy-

hemoglobin, and therefore of total blood volume and oxygenation, from absorption images at multiple

wavelengths. Metabolic activity and hemodynamic response give a window on tissue function, providing

information not accessible to other imaging modalities. This, combined with the ability to map the scatter-

ing coefficient and a sensitivity to optical contrast agents such as fluorescent dyes [2], results in a wealth of
applications. On the clinical side they include breast tumor screening [4], neonatal cerebral monitoring [3]

and arthritis assessment [6]. On the functional side they include neuroimaging [2,1] and muscle oximetry [5].

Reconstructing absorption and scattering coefficients from surface flux measurements is an inverse prob-

lem [9]. When optical inhomogeneity is large, or when baseline measurements are desired, model-based

nonlinear methods [10,13,20,15,36,14] are optimal. They require many solutions to the forward problem,

namely the simulation of flux measurements at certain distances from the sources given an optical model

of the underlying tissue with certain parameter values. These parameter values are then adjusted iteratively

[20,15,36] or sampled in a Bayesian statistical fashion [14] to solve the inverse problem. This can require
hundreds or more forward model solutions. Surface light flux measurements may be continuous-wave

(unmodulated), radio-frequency modulated, or time-resolved. Of these three measurement types, the latter

is considered to provide the most information [1]. The resulting reflectance signal measured at various dis-

tances from each impulsive point source is called a temporal point spread function (TPSF). Therefore, to

simulate such signals an efficient time-dependent forward solution is needed.

In this paper, we provide such a solution for the diffusion approximation (DA) to photon transport in a

layered medium. Layered media are ubiquitous in the biomedical field – for instance they approximate the

local geometry of scalp, skull, and brain, or skin, fat, and muscle – and recently a growing need for fast
layered solvers has been identified [32–34]. The fact that DOT makes use of point-like sources and detectors

at various separations means that the problem has cylindrical symmetry rather than being simply one-

dimensional (1D). The symmetry allows a much more rapid solution than is possible in general tissue

geometries where 3D finite element [9] or finite difference [20,15,14] methods are required. The DA, whose

validity is reviewed in Section 2, is orders of magnitude faster to simulate than the more physically accurate

radiative transfer equation (RTE). We note that gains due to the symmetry also extend to the RTE, for

instance using layered Monte Carlo [18,19], however its simulation remains an intensive task.

Our framework takes advantage of the symmetry of the medium (Fig. 1): using separation of variables
into planar coordinate q ” (x, y) and depth coordinate z, general fluence solutions to the DA can be built up

from solutions with a definite in-plane 2D wavevector k. Furthermore, the cylindrical symmetry of the
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Fig. 1. Coordinate system, and geometry of pill-box used to model the semi-infinite medium. The source fiber (not shown) lies along

the negative z-axis; the effective DA point source is shown as a large dot. Detector fibers (not shown) lie parallel to the negative z-axis

at the various radii R shown. As explained in Section 4, the pill-box is chosen to be large enough (�100 mm) that the resulting signals

differ negligibly from those due to a semi-infinite medium (infinite depth and radius).
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source term means that only the 1-parameter family of radially-symmetric solutions is needed (namely the

J0(kq) Bessel function parametrized by wavenumber k = jkj, where the radius is q = jqj). At each k there

remains to be solved a diffusive 1D partial differential equation (PDE) in z and time. If the system is of

infinite extent in the radial coordinate q then k is a continuous parameter; integrating the contributions

from different k then corresponds to a Hankel transform from k to q. This idea is well-known in the liter-
ature on multilayer (piecewise homogeneous) stratified media. For instance in the 2-layer medium it is used

by Dayan et al. [30] to derive approximate solutions, and, in the case of steady-state solutions, by Kienle

et al. [32] who evaluate the Hankel transform via numerical quadrature (the 1D steady-state PDE having an

analytic solution).

Our approach, which as far as we are aware is new, involved first truncating the system�s radius to a finite

value large enough to induce negligible error (because of the nature of the diffusion equation this error can

be made exponentially small). Therefore, the integral over k becomes a sum over discrete (quantized)

wavenumbers km. The choice of method for the 1D evolution of each mode m is very flexible: we choose
finite-difference methods. Computational efficiency is achieved (a) by carefully considering the errors and

requirements of the time-resolved DOT application, (b) by introducing a novel timestepping scheme appro-

priate for impulsively-excited parabolic problems (this contrasts the uniform timestepping currently used

both in the DOT field [13,20,24,14] and more generally), and (c) by minimizing the length of time for which

each mode m is evolved. The last of these relies on the fact that errors due to truncation in the Fourier do-

main are also exponentially small (see Fig. 3(b)). The desired TPSF signals are then extracted in the usual

way from the resulting solution at the surface.

We now categorize some of the different choices made by other authors. In our method sketched above
the fluence function /(q, z, t) is written as a sum of modes wm(q)um(z, t), which we could call a transverse

mode approach. The other possibility is a sum of modes nl(q, t)vl(z), or longitudinal mode approach, where

the roles of q and z have been reversed. The latter has been used for steady-state solutions in 2- and 3-layer

media [28,29], and time-resolved solutions [34] based upon them. The longitudinal eigenvalues are found by

numerically solving a transcendental equation (root-finding), and the nl(q, t) obey the analytically-solvable

2D homogeneous diffusion equation. However, a finite total depth is needed to ensure that all eigenvalues

are discrete, and computational effort increases with eigenvalue density which is in turn proportional to to-

tal depth. Therefore, the approach is ill-adapted to infinitely-thick media. Quantization in both q and z is
used in the eigenfunction method of Martelli et al. [35], which handles finite media but requires triple

summation.

Other approaches include the remarkable analytic expansion of Tualle et al. [33], which relies on a vol-

ume source representation of the solution due to a planar medium interface to generate very fast 2-layer

solutions. We also note that integral equation techniques lend themselves naturally to the solution of PDEs

in piecewise-homogeneous media – in particular since the problem of history-dependence of time-dependent

diffusion has been elegantly overcome [47,48] – however we know of no biomedical applications of these

promising techniques.
In contrast to all the above layered approaches which are based on boundary matching, our choice of 1D

evolution method allows us to model media with arbitrary depth-dependent absorption and scattering coef-

ficients, hence we can tackle an arbitrary number of layers, and continuously-varying coefficients, with no

extra complexity. This may be important for tissues such as the skull which appears to have scattering prop-

erties which vary continuously with depth.

The remainder of this paper is structured as follows. In Section 2, we present the well-known DA model

and discuss its validity. In Section 3, we bring together the requirements placed on our method by the DOT

application; this will prove important for maximizing numerical efficiency. Emulation of the infinite system
by one of finite size is presented, along with numerical convergence tests in Section 4. The core of the meth-

od, which solves the DA in this finite-sized system, is explained in Section 5. Section 5.5 provides an algo-

rithm summary. Numerical convergence of the finite-difference method, and validation against an existing
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method, is presented in Section 6. The scaling of computational effort is analyzed in detail in Section 7. We

discuss some issues, limitations, and future directions in Section 8, and conclude in Section 9.
2. The diffusion approximation model

Incoherent mono-energetic photon passage through tissue is described by a Boltzmann-type RTE giving

the time-evolution of the radiance U(r, X, t) (photon density in the 5-dimensional phase-space comprising

position r ” (x, y, z) and solid angle X). By retaining only the first (dipole) term in the angular dependence,

and assuming this dependence is small [11,9], we get the DA,
1

c
o/
ot

¼ r � ðjr/Þ � la/þ q; ð1Þ
where /(r, t) is the fluence (the angular integral of radiance), q(r, t) is the source term, j(z) is the local dif-
fusion constant (in units of length), la(z) is the local absorption (in units of inverse length), and c is the

speed of light in the medium, defined as the speed in vacuo divided by n the refractive index. j is related

to reduced scattering coefficient l0
s by the good approximation [16,9] j ¼ 1=ð3l0

sÞ. It is the reduced dimen-

sionality (fluence is a function of 3 spatial dimensions as opposed to 5 for radiance) that makes the DA
easier to solve than the RTE. We remind the reader of the coordinate system used for what follows:

z = 0 defines the air-tissue interface with z increasing with depth inside the medium, and q ” (x, y) is the

in-plane coordinate whose length is the (cylindrical) radial distance q (see Fig. 1). We reserve the symbol

R to refer to distance of a detector from the source. Note that in this work we have spatial dependence

of j and la but not of n (allowing this would require only simple changes to the finite difference scheme).

Given a source–detector separation R, the DA is a good approximation to the RTE when several con-

ditions are satisfied [39,9,16]: that la � l0
s everywhere, that 1=l

0
s is much smaller than both R and any sig-

nificant geometrical features, that times much greater than R/c are considered, and that appropriate
boundary conditions and optode models, discussed below, are used. The size of the error involved in using

the DA is a topic of ongoing investigation: it has found to be acceptably small for time-resolved reflectance

of layered media [32], although biomedical situations where the steady-state fluence is inaccurate may be

found [16]. In particular, the DA breaks down in the clear cerebro-spinal fluid (CSF) layer between the skull

and brain, however there exist ways [21,40] to handle this within the DA, and there is recent evidence that

the effective l0
s of CSF is only a few times less than that of surrounding tissue [22].

The best choice of boundary condition for an air-tissue interface appropriate for the time-domain setting

is a topic of recent research [38,12,25,31,37]. The extrapolated boundary conditions
/ðr; tÞjz¼�zb
¼ 0; 8q; t; ð2Þ
have proved to be reasonable [37]. With n � 1.4 for tissue [41] the extrapolation distance, taking into ac-

count Fresnel reflection [25], is zb � 1.96z0. Here the scattering depth is z0 � 1=l0
sð0Þ ¼ 3j0, written in terms

of the diffusion constant in the neighborhood of the surface j0 � limz!0þjðzÞ.
The impulsive source q is only nonzero at t = 0 (in this work we ignore the finite width of the impulse

response of optical fibers and instrumentation since this can be modeled easily by convolution in time).

Therefore, we can treat Eq. (1) as an initial-boundary value problem with no source term (q = 0). We take

the initial conditions appropriate for a narrow normally-incident optical fiber source in contact with the

skin to be
/ðr; 0Þ ¼ dðxÞdðyÞdðz� z0Þ; ð3Þ

the commonly-used isotropic DA point source model [25] (see Fig. 1). We note that, alternatively, a gradi-

ent source at z = 0 (that is, an inhomogeneous Neumann boundary condition) would also be easy to imple-

ment within our scheme, requiring only an appropriate change to Eq. (19).
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We define I(R, t) to be the detected signal (TPSF) at a source–detector distance R and time t. The best

way to extract this from the fluence solution in the time-domain has also recently been discussed [25,31,37].

The general linear combination,
IðR; tÞ ¼ j0 A
/ðR; tÞ
zb

þ ð1� AÞ o/
oz

ðR; tÞ
� �����

z¼0

; ð4Þ
with A 2 [0, 1], covers all possibilities and, by varying A, can account for arbitrary detector fiber numerical

aperture. The weighting is chosen so that in the long-time limit the signal is independent of A. Unless stated

we will choose A = 1, since this is known to perform well (in [37] this choice is named �R3�). Other choices of

boundary condition and measurement type are easy to implement within our method.
3. Requirements of our numerical method

In order to maximize numerical efficiency, it is important to list the requirements which arise in the bio-

medical DOT application, which we do in this section. Our method is currently designed and used for fitting

signals collected by time-correlated single photon counting (TCSPC) apparatus [7,8,1], a popular choice for

time-resolved DOT. The goal is fast computation of I(R, t) for each source–detector separation R, to an

accuracy sufficient for the fitting process. The first four requirements listed, involving the system parame-

ters, arise generally in time-resolved biomedical DOT. We will show later that requirements (ii) and (iv)

have quite a strong influence on the total effort needed for computation; see Eq. (50). The last requirement,

namely the choice of acceptable error level, also has a strong effect on total effort, thus we have matched
this error level in more detail to our TCSPC fitting application. All five requirements are expected to have

analogues in other diffusion applications, such as heat conduction.

(i) Source-detector separation range: At each R, we define the time-resolved peak signal

IpeakðRÞ � max
t

IðR; tÞ. The decay of Ipeak(R) with R is rapid: for example in a homogeneous medium with

zero absorption, Ipeak(R) � R�5. Thermal safety considerations, fiber area and detector sensitivity limit use-

ful source–detector distances of interest to Rmax, which is of order 40 mm. It transpires that our numerical

scheme is insensitive to any minimum R, so we set R 2 [0, Rmax].
(ii) Time range of interest: At early times the DA does a poor job of approximating the RTE [39]. Therefore,

there is a time tmin � 100 ps [17,23,31] before which it is not appropriate [43] to compute the signal. After a

time tmax of order a few thousand ps, the signal drops below detectable levels. Therefore, I(R, t) is needed

only for t 2 [tmin, tmax].

(iii) Maximum depth of medium: We are interested in both finite-thickness and semi-infinite media. In this

work, we tackle the semi-infinite case, which is more challenging because it requires a decision about how to

truncate the medium�s infinite spatial extent while keeping errors acceptable (see Section 4).

(iv) Optical parameter ranges: Given a medium we define the inhomogeneity ratio a � jmax=jmin ¼
l0
s;max=l

0
s;min, where jmax and jmin are the maximum and minimum of j(z). For biomedical applications a

rarely exceeds 10, and is usually much less. However, a is not small enough that perturbative methods

of solution are possible. For instance, the range of l0
s reported in in vivo human head tissues, excluding

CSF, is 0.6–2.5 mm�1 [14,16,42,44]. There is recent evidence [22] that even the clear CSF has an effective

l0
s of 0.16–0.32 mm�1, in which case including it in the DA model causes a hardly to exceed the above limit.

Because la � l0
s within the DA it will transpire that there are effectively no further constraints on absorp-

tion values.

(v) Acceptable error as a function of time: The basic principle we apply is that forward model errors (numer-
ical and physical) should not exceed a small fraction of the detection apparatus measurement errors [45].

Given a signal I(t) we define an acceptable absolute error level Ierr(t). If absolute numerical errors in
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calculating I(t) are below this baseline for all t 2 [tmin, tmax], then we define this to be acceptable accuracy. If

relative error alone defined acceptability, this would correspond to Ierr(t) = �I(t), where � sets the relative

error. However, when signals are very small, such as at early times and large R, in practice relative meas-

urement errors grow (or the signal is below detection levels), and this criterion becomes too stringent. We

therefore propose a modified criterion which includes the Poisson shot-noise statistics of single photon
counting [7], namely
I errðt; c; �Þ � max
Ipeak
c

;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IpeakIðtÞ

c

s
; �IðtÞ

" #
; ð5Þ
where the max function returns the maximum of its three arguments. Note that for I(t) sufficiently large

this expression equals �I(t). The first and second arguments together approximate the form of the stand-

ard deviation of the Poisson distribution (r � ffiffiffi
n

p
for n detected photons). Ipeak is relevant because at a

given R, in practice the apparatus gain is adjusted to prevent saturation at Ipeak. The dynamic range of

interest is set by c. In our context, with �105 photons detected per source–detector pair [14], and a dark

count of �10�3Ipeak, we believe c � 104 or 105 is appropriate. The third argument is the original relative

error criterion; typically we need � � 10�2. Clearly larger c or smaller � demand smaller numerical errors;
this will result in a slower forward solution. In Fig. 2, we show a typical signal I(t) and the resulting

acceptable error level Ierr(t).
4. Truncation of the spatial domain

We want to solve the initial-boundary value problem given by the sourceless version of Eq. (1), namely
1

c
o/
ot

¼ r � ðjr/Þ � la/; ð6Þ
with boundary condition equation (2) and initial condition equation (3), in the semi-infinite slab

q 2 [0, 1], z 2 [�zb, 1]. Note that the slight extension of the domain into negative z results from the
extrapolated boundary condition. Here we give a recipe for truncating this domain while causing negligi-

ble changes to the desired signals I(R, t). Although the problems of depth truncation and radial truncation

can be treated independently due to the system�s separability, they are formally similar so we treat them

both here.

We truncate both spatial coordinates to create a finite cylindrical box q 2 [0, a], z 2 [�zb, L] (see Fig. 1).

We impose numerically-convenient (we choose Dirichlet) boundary conditions on the newly-created

boundaries:
/ða; z; tÞ ¼ 0 8z; t; ð7Þ

/ðq; L; tÞ ¼ 0 8q; t: ð8Þ

The key idea is that because the form of the time-dependent Green�s function has Gaussian tails, the er-

rors introduced by the box die exponentially with increasing box size, at fixed time. The spreading increases

with time, therefore we should use t = tmax when bounding the errors. A one-dimensional schematic is given
in Fig. 3(a).

We now formalize this more precisely in the similar case of a homogeneous medium of scattering coef-

ficient j and absorption coefficient la, inside the cuboid box x 2 [�a, a], y 2 [�a, a], z 2 [�zb, L]. Because of

exponential convergence, the general result will carry over to the cylindrical box case; we will also verify this

numerically. The exact solution in semi-infinite space is the sum of a heat kernel and its image charge,
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Fig. 2. Typical signal I(t) (thin solid line), and its corresponding acceptable error level Ierr(t) (fat grey solid line); see Section 3. Ierr(t) is

the larger of the Poisson error level (dash-dotted) and a constant relative error level (dashed). Here the relative error level dominates

from roughly 500–2500 ps. The horizontal dotted lines show Ipeak and Ipeak/c. The error parameters are a dynamic range of c = 105 and

relative error of � = 10�2. This signal resulted from a homogeneous medium with l0
s ¼ 1 mm�1, la = 0.01 mm�1, R = 40 mm.
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/ðq; z; tÞ ¼ e�
q2

4jct�lact

ð4pjctÞ3=2
e�

ðz�z0Þ2
4jct � e�

ðzþ2zbþz0Þ2
4jct

� �
: ð9Þ
For large t we can Taylor expand the term in square brackets. The first nonzero term gives the dipole

approximation
/dðq; z; t; zdÞ � d
z� zd
t5=2

e�
ðz�zdÞ

2þq2

4jct �lact; ð10Þ
a a
x
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x
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One-dimensional example of real-space (a) and Fourier space (b) representation of the diffusion equation Green�s function, or
ernel, in a box. As the Gaussian width grows in real-space, it shrinks in Fourier space.
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where the dipole strength is d = (zb + z0)/(4p)
3/2(jc)5/2 and its vertical location zd = �zb. We use Eq. (4) with

A = 0 (the A-dependence is negligible) to give the signal detected at distance Rd in the xy-plane from a di-

pole vertically located at zd,
IðRd; t; zdÞ ¼ j
o/dðRd; z; t; zdÞ

oz

����
z¼0

: ð11Þ
The cuboid box case can be solved using the method of images [46], using an infinite periodic rectan-

gular 3D lattice of image dipole sources. We are interested in the case where the relative errors are small;

this corresponds to a heat kernel width
ffiffiffiffiffiffiffiffiffi
2jct

p
which is smaller than a or L. Therefore, the error size will

be well approximated by considering only the nearest set of image dipoles (the remaining infinite sum

contributing exponentially less, as can be proved by bounding the sum by an exact Gaussian integral

[47]).

In the xy-plane the four closest image dipoles have distance 2a from the origin, and therefore distance

Rd P 2a � R from the detector. Since R, Rd � zb, we can use zd � 0. The relative signal error due to these
image dipoles is bounded by
�a 6 4
Ið2a� R; t; 0Þ

IðR; t; 0Þ ¼ 4e�
aða�RÞ
jct 6 4e�

ða�RÞ2
jct : ð12Þ
Within our domain of interest this is largest at R = Rmax and t = tmax. Given a desired �a our choice of a
is therefore
a � Rmax þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jctmax lnð4=�aÞ

p
: ð13Þ
We have found that the difference between the convergence of �a with a in the cuboid and cylindrical

cases is slight. Therefore, Eq. (13) is also a reasonable choice of radius for the cylindrical box.

Similarly, along the z-axis the two closest image dipoles are at zd � ±2L and Rd = R, where we again

have used zb � 0. The relative signal error due to these two dipoles is
�L � 2
IðR; t; 2LÞ
IðR; t; 0Þ ¼ 2 1þ 2L2

jct

� �
e�

L2
jct: ð14Þ
Again using R = Rmax and t = tmax, an approximate solution for L is
L �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jctmax ln½Cð�LÞ=�L�

p
; ð15Þ
where C(�L) = 2[1 + 2ln(1/�L)].
Returning to our inhomogenous system, where no closed form for /(q, z, t) is known, we need a recipe

to choose the smallest safe values of a and L. We use the fact that the spatial spread is bounded (in the

xy-plane) by a Gaussian of width
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jmaxct

p
. This leads us to use Eq. (13) with the crude substitution

j = jmax. A similar consideration leads to Eq. (15) with the same substitution. In other words, we are

using a homogeneous system of diffusion coefficient jmax to bound the box size needed for an inhomoge-
neous system. When the inhomogeneity ratio a is large, these choices may be less than optimal, but

because the Gaussian width scales like j1/2, the factor by which both a and L could be suboptimal is only

a1/2 or at most about 3.

No rigorous analytic proof of the validity of the above box size bounds for the inhomogeneous case are

known to the author, however Fig. 4 shows verification that these estimates are valid for various inhomo-

geneous two-layered systems with large inhomogeneity a = 10. In practise the exponential convergence en-

sures that we can set �a and �L to values much smaller than the desired relative error � with very little

penalty: for the rest of this work we use �a = �L = 10�6. In our application, the typical resulting box size
is a � L � 102 mm.
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Fig. 4. Test of convergence of relative error at R = 40 mm (a typical Rmax), and t = 5 ns (a typical tmax) due to box truncation. The five

systems are: homogeneous (SYS1) and four inhomogeneous 2-layer systems with maximal range of j (SYS2–5), as described in Table 1.

(a) shows relative error using a given by Eq. (13) while �L = 10�15, and (b) shows the same using L given by Eq. (15) while �a = 10�15.

The dotted lines show expected behavior if these estimates were correct. The systems are compared against a calculation with

�a = �L = 10�15. In (a) the bottoming out at a relative error of about 10�4 reflects the overall error of the method; because a changes it

cannot be removed. In (b) kshift was fixed to allow comparison beyond this overall error level. Finite difference parameters were h = 0.5

mm, b = 0.05 (see Sections 5.2 and 5.3).
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5. The method

5.1. Transverse mode representation

All solutions of Eq. (6) with the boundary condition equations (2), (7) and (8) can be written
/ðq; z; tÞ ¼
XM
m¼1

BmwmðqÞumðz; tÞ; ð16Þ
which is exact in the limit M ! 1, where the radial functions are normalized eigenmodes of the Laplacian

in the disc of radius a in the xy-plane,
wmðqÞ ¼
1ffiffiffi

p
p

aJ 1ðvmÞ
J 0ðkmqÞ: ð17Þ
The transverse wavenumbers are given by km = vm/a, where vm is the argument of the mth zero of the J0
Bessel function. The coefficents corresponding to the correct initial condition equation (3) are

Bm ¼ ½
ffiffiffi
p

p
aJ 1ðvmÞ�

�1
, which can easily be shown by using dðxÞdðyÞ ¼

P1
m¼1wmðx; yÞwmð0; 0Þ; a special case

of the eigenfunction closure relation. We remind the reader that it is the symmetry of the initial condition

that causes only radially-symmetric modes to contribute.
For each m the evolution of um(z, t) obeys
1

c
oum
ot

¼ o

oz
j
oum
oz

� �
� la;mum; ð18Þ
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umðz; 0Þ ¼ dðz� z0Þ; ð19Þ

umð�zb; tÞ ¼ umðL; tÞ ¼ 0; 8t; ð20Þ

with the effective m-dependent absorption coefficient
la;mðzÞ ¼ laðzÞ þ k2mjðzÞ: ð21Þ
The signal is extracted using Eq. (4) applied to Eq. (16),
IðR; tÞ ¼ j0

XM
m¼1

BmwmðRÞ A
umð0; tÞ

zb
þ ð1� AÞ oum

oz
ð0; tÞ

� �
: ð22Þ
We discuss choice of the number of modes M in Section 5.4.

5.2. Spatial finite-difference discretization

Currently the 1D problem um(z, t) is discretized spatially using a finite-difference lattice of cell size h. A uni-

form lattice is used out of convenience; undoubtedly improved efficiency will result with a nonuniform lattice.

Values of fluence uðiÞm are based at nodes (i.e. junctions between cells), labelled by i = 0, 1, . . ., nz. The extrap-
olated boundary conditions require that the first cell begins at z = �zb, with the i = 0 node fluence value held at

zero. A minimum number of cells nz is chosen such that the last cell ends beyond the box depth z = L (recall

thatL has been chosen in Section 4 such that the results are not sensitive toL). The i = nz node fluence value is
held at zero to model the box boundary condition. In Eq. (18) the right-hand side is spatially discretized using

a 3-point template to give the continuous time-evolution (often called the �Method of Lines� [26]),
1

c
ouðiÞm
ot

¼ jði�1
2
Þ

h2
uði�1Þ
m � jði�1

2
Þ þ jðiþ1

2
Þ

h2
þ l

ði�1
2
Þ

a;m þ l
ðiþ1

2
Þ

a;m

2

 !
uðiÞm þ jðiþ1

2
Þ

h2
uðiþ1Þ
m ; i ¼ 1; 2; . . . ; nz � 1: ð23Þ
Here jði�1
2
Þðjðiþ1

2
ÞÞ signifies a diffusion coefficient, and l

ði�1
2
Þ

a;m ðlðiþ1
2
Þ

a;m Þ an effective absorption coefficient, within

the cell to the left (right) of node i.

The cell-averaging is not entirely obvious. By considering the steady-state flux conservation law and

Fick�s law across a cell split into two homogeneous pieces with different j, it is easy to show that l0
s, or

the inverse of j, is the correct quantity to average. On similar physical grounds la, and therefore for each

mode the effective la,m, is the correct quantity to average. Therefore, making use of Eq. (21),
1

geneous and 2-layer systems used for numerical tests

Upper layer Lower layer

l0s la Thickness l0s la Thickness

1.0 0.01 1

0.3 0 10 3 0.03 1
3 0 10 0.3 0.03 1
0.3 0.03 10 3 0 1
3 0.03 10 0.3 0 1

0.5 0.01 10 2.0 0.003 1
ption la and reduced scattering coefficient l0s are in units of mm�1, while thickness is in units of mm. The first four 2-layer

s cover the four possibilities of large and small absorption and diffusion for each layer, with a large choice of diffusion

ogeneity a = 10. All refractive indices are n = 1.4.
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ðjðiþ1
2
ÞÞ�1 � 1

h

Z ziþh

zi

jðzÞ�1
dz; ð24Þ

l
ðiþ1

2
Þ

a;m � 1

h

Z ziþh

zi

½laðzÞ þ k2mjðzÞ�dz; ð25Þ
where zi = ih � zb is the depth of node i. Note the peculiarity that j�1 is averaged for the diffusion term, but

j itself is averaged within the effective absorption term. The scheme is second-order accurate in h, as dem-
onstrated in Section 6.1.

We can express the single mode evolution equation (23) using the column vector um � fuðiÞm :
i ¼ 1; 2; . . . ; nz � 1g as the ordinary differential equation
oum

ot
¼ �SmumðtÞ; ð26Þ

umð0Þ ¼ u0: ð27Þ

The initial condition is given by a standard linear spatial interpolation of d(z � z0) appearing in Eq. (19)

onto the lattice. Similarly, the signal is extracted using linear spatial interpolations of um(0, t) and (oum/

oz)(0, t) in Eq. (22) on the lattice. These linear interpolations preserve the overall O(h2) accuracy.
Furthermore, we may express the whole discretized system as the N-component vector U � ½uT1 . . . uTM�

T

which is simply the vectors um stacked vertically. Its evolution (that is, the Method of Lines for the whole

system) is then
oU

ot
¼ �SUðtÞ; ð28Þ

Uð0Þ ¼ U0: ð29Þ
The N · N matrix S is block diagonal, with tridiagonal blocks Sm. Signal extraction by Eq. (22) can now

be summarized in the form of a projection onto a time-independent vector P(R),
IðR; tÞ ¼ PðRÞTUðtÞ: ð30Þ
5.3. Fast time-stepping scheme

The exact solution to Eqs. (28) and (29) is
UðtÞ ¼ e�StU0 ¼ V diagðe�kjtÞV TU0; ð31Þ

where the matrix exponential has been written in terms of the spectral decomposition of S: the eigenvalues

are kj and the eigenvector matrix is V = (v1� � �vN), that is, eigenvectors vj arranged in columns. Evaluating

the evolution exactly in this manner would require computing the full decomposition. It is the job of any

time-stepping scheme to approximate the important contributions to this evolution with much less numer-
ical effort.

Traditionally in the DOT field, if a finite-difference method is used then the time-stepping has been uni-

form, using either forward Euler [14] or Crank–Nicolson (CN) [13,20,24,9] schemes. The reasoning that

CN allows a longer time step Dt than forward Euler because it is guaranteed stable for arbitrarily large Dt
is often repeated [9] but can be unwittingly abused. What is not commonly understood is that in the limit

of stiff lattice modes (high decay rates k) then CN only approaches marginal stability: in Fig. 5(a) the CN

curve is asymptotic to �1. Technically CN is �A-stable� but not �L-stable� [26]. This manifests itself as
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Fig. 5. (a) Decay of amplitude aj(Dt) of a mode j of the system due to a single Crank–Nicolson time-step Dt (solid line), compared to its
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are assumed to have similar sizes. At a later time t they have decayed as an exponential function of their eigenvalue kj.
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unphysical extremely long decay times of the most oscillatory modes of the lattice, which can decay more

slowly than the physical low-frequency modes, thereby causing an exponentially erroneous solution. (Con-

trary to one claim [51], these modes cannot easily be damped out without reducing accuracy or requiring

a large increase in numerical effort). These oscillatory modes are strongly excited by a spatially-discontin-

uous initial condition such as Eq. (19). This fundamental problem has not been addressed in the DOT
numerical literature. The scheme we present overcomes this problem while also vastly reducing computa-

tional effort.

Eq. (31) states that U(t) is the sum of eigenvectors with exponentially-decaying coefficients,
UðtÞ ¼
XN
j¼1

ajðtÞvj: ð32Þ
The coefficients aj(t) = e�kjtaj(0) have initial values ajð0Þ ¼ vTj U0. Consider the spectrum of the system

matrix S and the coefficient decay illustrated in Fig. 5(b). We assume (i) that the density of eigenvalues

is approximately uniform along the k axis (this is to be expected since it is the generic behavior for a wave

eigenproblem in 2D [49]), and (ii) that all the aj(0) are of the same order of magnitude. At a fixed time t > 0

the decay e�kt is exponential in k. Therefore, at this time only the coefficients corresponding to eigenvalues
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lying in the range from a minimum of k1 to a maximum of kmax(t) � k1 + O(1/t) are needed; dropping coef-

ficients corresponding to k above this maximum would result in exponentially small error. Thus we see that

as t increases, a shrinking piece of the spectrum of size O(1/t) is relevant.

A single CN timestep of duration Dt performs approximate time-evolution via the formal replacement
e�SDt ¼
1� 1

2
SDt

1þ 1
2
SDt

þOðDt3Þ þ � � � ; ð33Þ
where O(Dt3) and higher terms are ignored. In practice the matrix division is handled by solution of the

tridiagonal linear system of equations, which requires O(N) computational effort [27]. The CN approxima-

tion in the eigenbasis can be written in terms the coefficients thus
ajðDtÞ � aCNj ðDtÞ ¼
1� 1

2
kjDt

1þ 1
2
kjDt

ajð0Þ: ð34Þ
This is plotted in Fig. 5(a): the approximation is good when kDt� 1, where the dominant error term is

�(kDt)3/12. For kDt � 1 the approximation is very poor. However, if we choose Dt such that kmax(t)D-
t < O(1), then all the relevant coefficients will be evolved accurately. Coefficients corresponding to larger

eigenvalues will have totally incorrect evolution, however we have already established above that this

causes negligible error. This suggests a t-dependent (i.e. nonuniform) timestep Dt(t) � [k1 + O(1/t)]�1.

The long-time limit of Dt(t) presented above is a constant, 1/k1. This situation can easily be improved so

that there is no upper limit. We shift the spectrum of S by defining
S0 � S � kshiftI ; ð35Þ
with shift kshift = k1. Now the minimum eigenvalue k01 of S
0 is zero, and the relevant spectral range is from

zero to k0maxðtÞ � Oð1=tÞ. Thus we have the modified scheme
DtðtÞ ¼ bt; ð36Þ

where the choice of constant b � 1 is discussed in Section 6.2. We call this �logarithmic timestepping� since
it is uniform in ln(t). We use CN with this timestepping scheme to approximate the evolution
U0ðtÞ ¼ e�S0tUO ð37Þ

in the usual way (namely Eq. (33) with the substitution S 0 for S). It then requires very little numerical effort

to undo the shift:
UðtÞ ¼ e�kshifttU0ðtÞ: ð38Þ

In practice kshift can be computed (using the LAPACK routine DSTEVX [50]) in negligible O(nz) time

since k1 of S is simply the lowest eigenvalue of the matrix Sm for the first mode m = 1. For each CN step the

tridiagonal system of equations is solved using LAPACK [50], separately for each block Sm comprising S.

This logarithmic scheme evolves modes of a given decay constant accurately during the time that they
contribute, then inaccurately (without increasing their amplitudes) once they reach a negligible (exponen-

tially small) contribution. However, we need a recipe to initialize the method, since Eq. (36) as it stands

would require infinite numerical effort to handle small times t ! 0. One solution would be to start with

an analytic solution for U(t) at some small t = t0, and evolve from there. This would require simple forms

for j(z) and la(z) in the uppermost part of the medium. Instead we decided to use an initial CN phase from

t = 0 to t = t0, with constant step size Dt0 sufficiently small that even the highest decay-rate modes of the

lattice decay to safe amplitudes. We call this phase X (see Fig. 6(b)). A reliable recipe for the choice of

t0 and Dt0 is given in Appendix A.
This timestepping scheme is second-order accurate in b, as verified in Section 6.2. The exponential decay

of modes means that either assumption (i) or (ii) would have to be very strongly violated to invalidate the
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above method. However, once the above-calculated U(t) is substituted into Eq. (30), we note a third

assumption becomes required: (iii) that after the projection equation (30), coefficients contribute approxi-

mately equally to the signal without significant cancellation. Unfortunately we will see in Section 6.2 that

for a certain corner of the (R, t) plane assumption (iii) is not valid and therefore larger errors result.
5.4. Time-dependent truncation of the mode sum

We truncate the number of terms in the sum Eq. (16) to a fixed finite number M as we evolve from t = 0

to t = tmin (phases X and Y). We then successively shrink this number for the remaining segment of time

t 2 [tmin, tmax] (phase Z). This is sketched in Fig. 6(a). This latter truncation in phase Z results in a signif-

icant improvement in the scaling of numerical effort (from log tmax to independent of tmax).

The truncation can be performed with exponentially small errors. This is evident from Fig. 7(a) where it

is clear that at each fixed time t, the mode contributions die exponentially with m, and that as t increases,
fewer and fewer modes are needed to give an accurate answer. This exponential convergence of the mode

sum can be understood as the result of the growth with m of the effective absorption coefficient la,m in Eq.

(21). Alternatively it can be viewed as the result of the exponential tails of the transverse Fourier represen-

tation of the heat kernel [47] as it contracts in time, as sketched in Fig. 3(b) and explained in Appendix B.

We define a desired truncation error level �M. Either by considering the decay rate equation (21) in the

top layer of the medium, or using the reasoning in Appendix B, we have an estimate for the transverse

wavenumber at which truncation can occur, at a given time t,
kmaxðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð1=�MÞ

cj0t

s
: ð39Þ
Notice that it decays with time like t�1/2. Using the asympotic form for the locations of Bessel zeros, we

have a linear relation between wavenumber and mode number,
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which results in inconsistency and therefore huge relative errors at early times where cancellation is important (see Section 8.1).
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M � kmaxa
p

: ð40Þ
Therefore, we compute M using Eqs. (39) and (40) with the substitution t = tmin, finally rounding M up

to the nearest integer. We also decide when to �kill� each mode m in phase Z by rearranging Eq. (39) to give
tkill;m ¼ lnð1=�MÞ
cj0k

2
m

; ð41Þ
where instead of kmax the transverse wavenumber km appropriate for each mode has been used.
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Our estimates in this section have been based on a homogeneous system with j equal to its surface value

in the inhomogeneous system. This will only cause inaccuracies if j(z) changes substantially over a z range

equal to the kernel width
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j0ctmin

p
. In practise we have found no problems in inhomogeneous systems of

interest. We ensure that the error level is set many orders of magnitude lower than the dynamic range c; we
typically use �M = 10�12, giving in our setting M0 � 102.

It could also be possible to avoid the above estimation formulae by adding modes successively until con-

vergence of I(R, t) is achieved within the entire desired domain of the (R, t) plane, however we have not

implemented this.

5.5. Algorithm summary

We are given the functions j(z) and la(z) defining the medium, the parameters tmin, tmax and Rmax defin-

ing the region of interest in the (R, t) plane, the detector weighting A, and the error parameters �a, �L, �M,
and �X whose values have all been discussed earlier. The finite-difference parameters h and b are then chosen

as discussed in Section 6. The box sizes a and L are chosen via Eqs. (13) and (15). The maximum mode

number M is chosen as in Section 5.4. We then compute the wavenumbers km and the Bessel coefficients

Bmwm(R) appearing in Eq. (22), using lookup tables of vm and J1(vm). The 1D system tridiagonal matrices

Sm are then set up as in Section 5.2, and kshift is found as in Section 5.3. The phase X parameters t0 and

Dt0 are found as in Appendix A. Each mode m is then initialized and evolved as in Section 5.3 until its time

to be �killed� given by Eq. (41), or tmax, whichever comes sooner. We note that, until it is �killed�, every
mode undergoes an identical CN timestepping scheme. The signals from each mode are summed using
Eq. (22).

The signal output I(R, t) is computed for a requested set of R values, on a uniform time grid. Fig. 11(a)

shows representative resulting I(R, t). Linear interpolation is used to resample from the CN timesteps to the

uniform time grid. This resampling is O(b2) accurate, so preserves the basic scaling with b (see Section 6.2).

A software implementation (C callable from a MATLAB interface) is freely available online at http://

www.cims.nyu.edu/~barnett/software.html.
6. Convergence and accuracy

In this section, we demonstrate convergence with respect to h (finite-difference lattice spacing) and b
(timestepping parameter), and validate against a known solution. For convergence with respect to h (Sec-

tion 6.1) we use relative signal errors, however for the remaining tests we introduce an error measure more

relevant for our application. We define the error measure
EðtÞ � IðtÞ � IexactðtÞ
I errðtÞ

; ð42Þ
where Iexact(t) is some �exact� (or reference) signal. If E(t) 6 1 for all t we define this to be acceptable error.

Note that the denominator is the acceptable error level Ierr(t) defined in Eq. (5) and is controlled by two

error parameters: we will use the choices � = 10�2 and c = 105 throughout. Therefore, for large signals,

E(t) is a measure of % relative error.

6.1. Lattice spacing h

The finite-difference scheme is second-order accurate in h, as demonstrated by the 2-layer results for rel-

ative error shown in Fig. 8. The convergence prefactor depends strongly on time and system optical prop-

erties. For these results, the system with the largest errors of all six systems of Table 1 has been chosen.

http://www.cims.nyu.edu/~barnett/software.html
http://www.cims.nyu.edu/~barnett/software.html
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Rather than having smoothly-varying optical properties, as finite-difference methods are usually intended

to handle, these 2-layer systems have a maximal discontinuity in both optical coefficients at the interface

between the upper and lower layer. Therefore, we consider this to be a stringent test of the method. Given

a desired relative error � = 10�2, this indicates h = 0.3 mm is sufficient in this worse-case scenario.

Notice that there is sometimes rapid variation of error as a function of h, resulting in quasi-random scat-

ter, which also dies like O(h2). This results from the fixed depth of the interface falling at different fractions

across a cell as the lattice changes size. Correct cell-averaging (Eqs. (24) and (25)) is needed to ensure this

effect does not spoil the O(h2) convergence. Note that the choice of absorption diagonal term in Eq. (23),
namely a la,m that has been averaged across two cells, may also not be optimal.

6.2. Timestepping parameter b

Our CN logarithmic timestepping scheme is second-order accurate in b, as demonstrated by the results in

Fig. 9 for a homogeneous system. We postpone the theoretical analysis of this result to a future publication.

We only note that the result is reasonable since the constant-Dt CN method is O(Dt2) accurate over a fixed

interval of time, and in any small window of time our method resembles this method. It is also important to
note that b can be held fixed as the lattice spacing h is reduced: timestepping error at fixed b, since it is

related to the physical modal structure, is independent of h. In the figure, oscillations in error are visible,
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due to the linear interpolation between the CN timesteps. An improved interpolation scheme (for instance,

cubic) could improve the error prefactor but not its basic scaling.

The error E(t) has a peak at early times, which becomes more dominant and wide as R grows (see Fig. 9).

This peak is due to breakdown of assumption (iii) from Section 5.3. As shown in Fig. 7(a), the signal at

larger R takes some time to grow from very small values; this is simply because the diffusing light has
not yet reached that radius (we are in the exponential tail of the spreading fluence distribution). Therefore,

at large R and small t a large number of modes m cancel each other almost exactly, allowing the contribu-

tion of rapidly-decaying modes to be important. These rapidly-decaying modes were the ones inaccurately

evolved in our timestepping scheme, causing the larger errors. Note that at later times the cancellation dis-

appears and higher accuracy is achieved. It is this early peak which sets our acceptable choice of b. Given an

Rmax of 40 mm and typical tissue optical parameters, this peak is only an order of magnitude larger than

later errors, and b = 0.04 is acceptable. However, if Rmax becomes much larger then the necessary b be-

comes smaller rendering the scheme less efficient. Our form of acceptable error level defined in Eq. (5),
as well as our choice of � and c, have significant effects on the largest acceptable b. For instance, decreasing
c to 104 would allow b = 0.07 to be acceptable, with a corresponding increase in calculation speed.

Fixing b = 0.04, we have verified that errors are acceptable in a variety of 2-layer systems, as shown in

Fig. 10. Because of the large inhomogeneity a = 10 tested here, we believe that the errors will also be accept-

able for the less extreme systems usually arising in the biomedical application. Notice that, as with the

homogeneous system, the initial peak in E(t) is responsible for the maximum error levels.

6.3. Verification in 2-layer system

We have independently verified the accuracy of our method in the case of 2-layer systems, by comparing

against the real-space analytic power series method of Tualle et al. [33,52] (with summation parameters
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n = 2, l = 20; see [33]). Fig. 11 illustrates the agreement between the two methods for an example 2-layer

system with a = 4. The agreement is excellent, typically at the 0.5% level. Notice that the fact that the peak

values agree demonstrates the accuracy of the relative signals at different separations R (the peaks have not

been normalized to have the same values). In terms of the error level E(t), we see that choices of method

parameter values h and b derived from the above convergence experiments result in acceptable error. Be-
cause the method of Tualle et al. uses the detection of fluence gradient (that is, A = 0 in Eq. (4)), our com-

parison was made using this choice; in any case the variation with A is very slight. Finally we note that our

method is stable over much wider variety of system parameters than that of Tualle et al. [52]: we have found

that for 2-layer systems where the lower layer is significantly less scattering than the upper, their method

can give unusable (nonconvergent) results.
7. Scaling of computational effort

We would like to know how the computational effort scales with the various system and numerical

parameters. Nearly all the effort is spent in timestepping the finite-difference method. The cost of increasing

the number of desired separations R or interpolating onto more time points t is negligible.

Defining f to be the cost of a single CN step for a single mode m (i.e. a finite-difference system of size nz),

we can estimate total effort with the help of the schematic Fig. 6. Phase X requires 1/b steps, and phase Y

requires ln(tmin/t0)/b steps, both involving all M modes. In phase Z the number of modes involved at time t

is M
ffiffiffiffiffiffiffiffiffiffiffi
tmin=t

p
. The total effort is therefore
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Fig. 10. Verification that timestepping errors are at acceptable levels for the four highly-inhomogeneous systems (SYS2–SYS5) from

Table 1, at three source–detector separations R (in mm). Timestepping was fixed at b = 0.04, with h = 0.5 mm. Error measure E(t) is

defined in Eq. (42), with Iexact(t) found via uniform CN timestepping at Dt = 0.25 ps.
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Fig. 11. Verification of method accuracy for the 2-layer system SYS6 (defined in Table 1). (a) Shows computed signals I(t) using our

method (symbols) against the signals Iexact(t) computed with the method of Tualle et al. (solid lines). The five source–detector distances

R are as labelled. A single multiplicative prefactor was fitted, then used to compare the two sets of signals for all values of R. At each R,

Iexact(t) is normalized to have peak value 1 in the time range of interest, and I(t) is normalized by the same factor. (b) Shows error

measure E(t), defined in Eq. (42), resulting from comparing the two methods. Timestepping was fixed at b = 0.04, with h = 0.5 mm and

tmin = 100 ps.
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F ¼ Mf
b

1þ ln
tmin

t0

� �� �
þ
Z tmax

tmin

dt
f
bt

M

ffiffiffiffiffiffiffi
tmin

t

r
ð43Þ

¼ Mf
b

3þ ln
tmin

t0

� �
� 2

ffiffiffiffiffiffiffiffi
tmin

tmax

r� �
ð44Þ

� qMf
b

; ð45Þ
where we have used the fact that tmax � min. The number q is of order 3–7. The choice of b depends on the

required relative accuracy (choice of �); for � = 10�2 appropriate values were discussed in Section 6.2. In the

remain required We treat b as a given constant, which is chosen (as discussed in Section 6.2).

7.1. Finite system

We now ask, given the finite cylindrical system of fixed depth a and radius L, how the total effort F

scales. We make use of f = pnz = pL/h, where p is the effort per lattice node per timestep in the CN scheme.
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Since p is of order a few floating-point operations (flops), this gives F units of flops. Substituting for M

using t = tmin in Eqs. (39) and (40), we get
F ða; LÞ � qp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð1=�MÞ

p
pb

� aL
h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cj0tmin

p : ð46Þ
The first factor is a number of order 103–104. The second factor is a ratio of two areas: the system�s cross-
sectional area aL, and the product of lattice size and the heat kernel spreading size by time tmin. Further-
more, although we postpone the derivation and tests to future work, the h required for accuracy �h at early
times t = tmin can be estimated (using a homogeneous system) as
h �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hcj0tmin

p
; ð47Þ
which follows from the kernel spreading size and the O(h2) lattice convergence. We can set �h � � � 10�2.

Substituting this gives
F ða; LÞ � qp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð1=�MÞ

p
pb

ffiffiffiffi
�h

p � aL
cj0tmin

; ð48Þ
where the first factor is of order 104–105, and the second factor ratio is the fraction of the cross-sectional

area occupied by the spreading kernel by time tmin. Notice that tmax has become irrelevant: the limit

tmax ! 1 can be taken with almost no extra effort. This contrasts common constant-Dt schemes where

the effort scales linearly with tmax. This surprising result is due to our logarithmic timestepping and succes-

sive �killing� of irrelevant modes in phase Z.

7.2. Infinite system

In Section 4, we found the a and L necessary for approximation of the infinite system by a finite one.

Using Eqs. (13) and (15), assuming Rmax � a and �L = �a we can estimate
aL � cjmaxtmax lnð1=�aÞ: ð49Þ

Thus area grows linearly in time, as it must in a diffusion process. Combining this with Eq. (48) gives the

effort for the semi-infinite problem
F � qp½lnð1=�aÞ�3=2

pb�1=2h

� jmax

j0

� tmax

tmin

; ð50Þ
where we have assumed �M = �a for convenience. The first factor is of order 105–106, the second is a ratio

bounded by a, and the third is of order 50 in the biomedical application. This gives a typical F � 107 flops.

This is consistent with typical runtimes of 0.1–0.3 s which we observe on a 1 GHz Pentium III processor

(whose memory-limited speed is less than 108 flops per second), with tmin = 100 ps and tmax = 5000 ps. Thus

we are nearly an order of magnitude faster than the �1 s run time quoted by Martelli et al. [34,35], and,

when a large grid of R and t samples is needed, by Tualle et al. [33].

In summary, with error parameters fixed, our infinite system method scales linearly with tmax/tmin, at

most linearly with a, and inversely with b.
8. Discussion

We have described a method well-adapted for cylindrical systems of finite radius and depth. We have

applied it to the case of infinite radius and depth by using error estimates derived from a homogeneous
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medium. Because the diffusion inhomogeneity a is not too large, these estimates are not excessively wrong

(Section 4). However, the cross-sectional area of the required finite medium grows linearly in time.

There are two potential improvements in effort scaling for the infinite system: (1) Use of a nonuniform

finite-difference lattice, where h increases with depth (this could be extended to be adaptive in time, or fur-

thermore, to have a maximum depth L which increases in time). (2) Non-uniform representation in k-space,
in the manner of Greengard and Lin [48]. This latter approach is specifically designed to represent the infi-

nite-space heat kernel efficiently, that is, using as few Fourier modes as possible. These modes are logarith-

mically spaced in wavenumber. The rigorous convergence proofs in their work would need to be relaxed to

handle the inhomogeneous medium case. Since currently a large fraction of effort is spent in high-m modes,

the logarithmic spacing would be beneficial. The use of these two changes together could change the effort

scaling from O(tmax/tmin) to O(ln[tmax/tmin]), although since in the DOT application tmax/tmin is only of order

50 this may be limited to an order of magnitude improvement. In other applications this could be more

important.
In general, there is much future analytic work that could be done to improve the error estimates in

inhomogeneous systems. For instance, can tighter estimates for a and L be found? (A speed-up factor

of up to a is available here.) Can rigorous bounds be placed on the error due to truncation to a given

a and L? Can better estimates for M be found? Similarly, we have not analysed in detail how the accept-

able h depends on tmin and the optical properties (the scaling Eq. (47) need not be correct for inhomoge-

neous systems).

It is worth mentioning why a 2D finite-difference approach, that is, a cylindrical lattice in (q, z), is likely
to be less successful than the method we have presented. The main problem with a 2D system is that higher
Fourier modes cannot be �killed� in the manner of Section 5.4, so efficiency would be lower. The simplicity

of the CN implementation and small dataset size (which can fit within a CPU cache) in 1D also tend to

favor our choice. However, it would also be interesting to explore the use of our logarithmic timestepping

scheme for parabolic 3D finite-difference applications without symmetry.

Currently our method is limited by the fact that our logarithmic timestepping scheme performs poorly

when there is a lot of cancellation between mode contributions; this occurs at large R and early times. This

is a fundamental problem for the CN scheme that it cannot handle a large range of decay rates accurately

(large decay rates are relevant when there is cancellation; small rates are relevant at later times when can-
cellation disappears). One potential solution is to change kshift as a function of m in a consistent fashion

(e.g. Eq. (51) below). A more radical approach, which may be competitive in speed, is to solve for (some

subset of) eigenvalues and eigenvectors of the matrices Sm and perform an exact Method of Lines evolution,

bypassing timestepping schemes altogether.

8.1. Consistency and cancellation at early times

Here, we discuss a detail which can be skipped on first reading. By grouping together the M 1D finite-
difference problems into a single ordinary differential equation (28), we have simplified our discussion of

timestepping. However, initially in our research each 1D evolution problem equation (26) was handled

using a separate time-stepping scheme. This was deemed necessary to preserve accuracy: the rapidly-

decaying (high-m) finite-difference problems could either be given smaller timesteps Dt or a different kshift
adapted to handling their large decay rates more accurately. A typical resulting signal at large R is shown

in Fig. 7(b): here for illustrative purposes we changed the value of Dt0 during phase X very slightly for

each mode m. The evolution of individual mode contributions shows almost no perceptible difference

from Fig. 7(a) (their accuracy remains the same), however their sum is radically different. The resulting
signal is utterly wrong for the first 700 ps. The accuracy achievable is limited to a constant fraction (here

about 10�3) of the largest terms in the sum, which here are many orders of magnitude larger than the true

signal.
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Therefore, there is a consistency condition. It is not how accurately we can evolve each mode but rather

whether the scheme is consistent between modes which controls the signal accuracy when there is a high

degree of cancellation. Cancellation at large R and small t is present for the basic reason that the Fourier

representation of the Gaussian kernel does a poor job of representing the (exponentially-smaller) tails to

high relative accuracy. It is a pitfall that we cannot avoid in a transverse mode representation. When a
scheme is consistent, then the only limit on the size of signal that can be accurately calculated is the machine

precision (in Fig. 7(a) if R is further increased, the minimum achievable accurate signal is �10�15 of the

maximum term in the sum, due to the double precision arithmetic).

We aim to analyze the consistency condition theoretically in future work. We note that consistency re-

quires that a single timestepping scheme is used (that is, all modes m share a common choice of Dt(t), as in
Section 5.3). We have also found empirically that consistency is preserved by a m-dependent kshift when it

takes the form
kshift;m ¼ kshiftðkmÞ ¼ c1 þ c2k
2
m; ð51Þ
where c1 and c2 do not depend on m. There is potential to improve the method by using a kshift of this form.
9. Conclusions

We have described and tested an efficient new method for solution of the time-dependent diffusion equa-

tion (6) in stratified media with arbitrary absorption and diffusion coefficient depth profiles. Our method is

geared towards the DA to photon transport forward and inverse problems arising in biomedical imaging, in

particular, DOT. In this application a typical run time on a 1 GHz CPU is 0.2 s, which is several times

faster than quoted for current methods for less-flexible 2- or 3-layer systems. Our algorithm is reliable

and includes automatic choice of all numerical parameters (apart from b discussed in Section 6.2); this is

important for unsupervised use in iterative inverse problems.
The basic method applies to a finite cylindrical system, using a sum over transverse modes each of

which requires solution of a 1D diffusion problem. A novel logarithmic timestepping scheme (one

which is generally applicable to sourceless parabolic problems) allows efficient solution of the 1D prob-

lems using finite-difference methods. In order to extend the method to the semi-infinite system case, we

derived and tested expressions for the finite system size needed to accurately emulate the infinite

system.

We have analyzed numerical errors and convergence in depth, using an error measure acceptable for the

DOT application. A recurring theme is that because the diffusion inhomogeneity a arising in our applica-
tion is not too large, we can use convergence estimates derived for a homogeneous system. In particular, the

fact that the heat kernel has exponential tails in position space is used for the finite system size error esti-

mates, and the fact that the same kernel has exponential tails in Fourier space is used for truncating the

mode sum. Both therefore give exponential convergence. The finite-difference evolution is O(h2) and

O(b2) accurate. Our tests involved a variety of highly-inhomogeneous 2-layer media, although we empha-

size that the method handles arbitrary depth-dependent media. The conclusion that the effort scales like 1/

tmin for the finite system, and tmax/tmin for the infinite system, means that for speed in DOT applications it is

important to increase the desired tmin to as large a value as possible.
Within our general framework there is much flexibility. We have presented the case of reflection geom-

etry, however the modification to transmission through a finite-thickness slab is trivial. We expect that ma-

jor speed gains could result from implementing a nonuniform finite-difference lattice, and a nonuniform

representation of the sum over transverse wavenumber. Other than optical tomography, our method can

also be of use in impulsive stratified heat conduction problems, and the inverse problem of determining

thermal conductivity depth profiles.
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Appendix A. Parameter choice for initial Crank–Nicolson phase

The logarithmic CN scheme of Eq. (36) relies on starting at a finite time t0 with all unphysical high de-

cay-rate modes exponentially damped. We do this via an initial phase of CN with constant time-step Dt0.
We call this phase X (see Fig. 6(b)). In order for damping to be reliable, we need to consider two cases sep-

arately: t0 either less than or greater than tmin.

We first assume t0 6 tmin. We consider it a good choice to impose Dt0 = bt0, in which case n � 1/b steps

will be involved. The highest decay rate of the finite-difference lattice system S defined in Section 5.2 can be

estimated as
kh � cjmax

4

h2
þ k2M

� �
þ cla;max: ðA:1Þ
This follows from considering Eq. (23) for the lattice �optical mode� (alternating values ±1), and m = M.

The CN amplitude damping coefficient for this mode is
aCNh ðDt0Þ ¼
1� 1

2
khDt0

1þ 1
2
khDt0

� �1þ 4

khDt0
� � � � ðA:2Þ
We truncate the series expansion in 1/khDt0 at the term shown. After n = 1/b such steps, we require the

damping to have reached the small ratio �X, which we typically set to 10�9. Therefore
�X ¼ aCNh ðDt0Þ
�� ��� �n � 1� 4

khDt0

� �n

� e
� 4n

khDt0 : ðA:3Þ
Thus choosing n = 1/b gives our estimate
Dt0 ¼
4

bkh lnð1=�XÞ
: ðA:4Þ
The total time is then set by t0 = Dt0/b.
If the resulting t0 turns out to be greater than tmin, then we cannot guarantee that the damping has been

sufficient by the time signals are needed at t = tmin. Therefore in this case we fix t0 = tmin, which removes

phase Y (see Fig. 6(b)). We then find the Dt0 needed to perform damping by this time, using n = tmin/Dt0
steps, which will differ from 1/b. Substituting this n into Eq. (A.3) gives in this case
Dt0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4tmin

kh lnð1=�XÞ

s
: ðA:5Þ
Appendix B. Truncation of heat kernel in Fourier space

We can use a one-dimensional model to bound the error due to truncation in the Fourier domain of the

heat kernel at a given time t > 0. See Fig. 3(a) for a schematic in the discrete mode case. The error in 2D or
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3D is essentially the same. The result is well known (our presentation parallels the discrete wavenumber

case presented in Refs. [47,48]). The fluence in a medium with homogenous properties j, la, with the single

spatial coordinate x obeys
1

c
o/
ot

¼ j
o2/
ox2

� la/; ðB:1Þ
which has the fundamental solution
/ðx; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
4pjct

p e�
x2
4jct�lact: ðB:2Þ
This has spatial Fourier transform
~/ðk; tÞ �
Z 1

�1
/ðx; tÞe�ikxdx ¼ e�ðk2jþlaÞct: ðB:3Þ
We call /trunc(x, t) the inverse Fourier transform of ~/ðk; tÞ using a truncated wavenumber range

k 2 [�kmax, kmax]. The resulting error is
D/ðx; tÞ � j/truncðx; tÞ � /ðx; tÞj ¼ 1

2p

Z �kmax

�1
þ
Z 1

kmax

� �
e�ðk2jþlaÞcteikx dk

����
����

6
1

2p

Z �kmax

�1
þ
Z 1

kmax

� �
e�ðk2jþlaÞct dk

6 e�k2maxj0ct
1

2p

Z 1

�1
e�ðk2jþlaÞct dk ¼ e�k2maxjct/ð0; tÞ: ðB:4Þ
The second inequality can be shown by shifting the integration variable by ±kmax as appropriate, and

dropping the cross term from the resulting (k ± kmax)
2 factor in the exponent. Therefore, the relative error

D/(x, t)//(0, t) (error relative to the spatial peak) at time t is bounded by e�k2maxjctmin . Setting this relative

error equal to �M, and using the top-layer diffusion constant j = j0, gives the estimate Eq. (39).
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